Klawisze regulujące jasność Linux – rozwiązanie problemu.

Jakiś czas temu pisałem o laptopie Fujitsu-Siemens Esprimo V6515, którego opisywałem prawie dwa lata temu. Okazało się, że da się uruchomić należycie działającą regulację jasności. I prawdopodobnie dało się już wtedy, ale sposób jest mocno nieoczywisty. Ponieważ znalezienie rozwiązania zajęło mi dłuższą chwilę, obejmowało zabawy z debugiem ACPI itp. frajdy (zanim zadałem właściwe pytanie do wyszukiwarki), to zamieszczam.

Ogólnie problem był taki, że wciśnięcie klawisza brightness up powodowało wysłanie zarówno zdarzenia ACPI brightness up, jak i – natychmiast po nim brightness down. Przy czym sam brightness down działał normalnie. Rozwiązanie (warto wypróbować, jeśli ktoś ma problem z działaniem klawiszy do zwiększania jasności w laptopie) to dodanie opcji brightness_switch_enabled=0 do modułu kernela video. Najprościej trwale:

echo "options video brightness_switch_enabled=0" > /etc/modprobe.d/video.conf

Źródło: Brightness up/down key sensibility.

Praca na desktopie z małą ilością RAM po raz trzeci – zram.

W poprzednich wpisach było parę przemyśleń i sugestii poprawy komfortu pracy na desktopie wyposażonym w niewielką ilość pamięci RAM, bez finalnego rozwiązania choć z paroma trickami poprawiającymi pracę, więc pora na podejście trzecie do tematu, inspirowane przez kumpla z IRC, który sprzedał mi „newsa” o zram.

Od pewnego czasu (okolice kernela 2.6.37, jeśli dobrze widzę) w kernelu Linuksa obecny jest moduł zram, pozwalający na tworzenie kompresowanych urządzeń blokowych w pamięci RAM. Wykorzystać to można podobnie jak compcache, czyli do tworzenia kompresowanego obszaru pamięci, używanego przez system przed przeniesieniem danych na swap na dysku. Idea jest prosta – swap na dysku jest tragicznie wolny i obciąża I/O, procesor zwykle się trochę nudzi, zresztą nie będzie miał dużo więcej pracy, a ilość wolnej pamięci się zwiększy.

Ogólnie zram jest ideowym spadkobiercą compcache, ale wygląda mi na prostszy i ideowo, i w użyciu. No i jest obecny w kernelu. Idea działania jest prosta: tworzymy swap z wyższym priorytetem, niż swap na dysku, na urządzeniu blokowym umieszczonym w kompresowanym obszarze pamięci. Początkowo dane tradycyjnie są w RAM, w przypadku, gdy system musi korzystać z przestrzeni wymiany, umieszcza je najpierw na swapie w RAM, a dopiero później – tradycyjnie – na swapie na dysku.

Prosty skrypt realizujący powyższe:

#!/bin/bash
modprobe zram
echo $((200*1024*1024)) > /sys/block/zram0/disksize # 200 MB
mkswap /dev/zram0
swapon -p 60 /dev/zram0

Kolejno: załadowanie modułu zram (można korzystać z parametrów), określenie rozmiaru dysku dla urządzenia /dev/zram0 na 200 MB (i jest to rozmiar swap, będący jednocześnie maksymalną wielkością zużytej pamięci, nie rozmiarem przeznaczonej pamięci na swap!), utworzenie swapu na urządzeniu  /dev/zram0, włączenie utworzonego swap z priorytetem 60.

Podobno efekty są świetne – zaczynam testy u siebie, wstępnie nie wygląda źle, na pewno niebawem podzielę się wrażeniami (jako update do tego wpisu) po dłuższym teście. Jeśli chodzi o rozmiar swap dla modułu zram, to zacząłbym od 10-20% całości RAM (u mnie 200 MB przy 1 GB RAM). Z tego co zauważyłem, skompresowane dane zajmują w praktyce ok. 40-50% oryginalnych.

Parę przydatnych poleceń diagnostycznych:

  • cat /sys/block/zram0/compr_data_size – rozmiar danych po kompresji
  • cat /sys/block/zram0/orig_data_size – rozmiar nieskompresowanych danych
  • cat /sys/block/zram0/mem_used_total – całkowita ilość zużytej pamięci
  • swapon -s – rozmiar i wykorzystanie poszczególnych swap (inna jednostka!)

Linki w temacie, które zdecydowanie warto przejrzeć, jeśli ktoś jest bardziej zainteresowany:

Szczególnie ostatni wpis zawiera fajny, uwzględniający ilość procesorów skrypt startowy. Można rozważyć użycie po przeanalizowaniu. IMHO dla 1-2 procesorów trochę kosmiczne wartości będą, uzależnianie wielkości swap od ilości procesorów też jest średnie, ale poprawienie to nic trudnego. Za to obsługą utworzonego urządzenia blokowego zajmie się w tamtym wariancie więcej, niż jeden procesor. Z drugiej strony kto ma więcej niż dwa rdzenie i mało RAM?

Miałem obawy co do działania hibernacji (z użyciem pm-utils, z uswsusp miałem problem…) w takiej konfiguracji. Niepotrzebnie, bo wygląda, że działa OK – zapewne hibernacja jest na tyle inteligentna, że rozpoznaje, czy ma do czynienia z fizycznym urządzeniem blokowym.

Oczywiście swap to nie jedyne możliwe zastosowanie modułu zram – więcej przykładów w linku do wiki Gentoo.

Monitoring Tora w konsoli – howto.

Jak wiadomo m.in. z poprzedniego wpisu, prowadzę węzeł Tora. Bez połączeń wychodzących, czyli robię tylko za żuczka dokładającego jeden hop w ścieżce w celu zwiększenia anonimowości korzystających z tego programu. Od pewnego czasu miałem wrażenie, że jedyne, co robi mój Tor, to zajmuje pamięć (ponad 30% na biednym Dockstarze). Nie robiłem żadnych dokładnych statystyk, po prostu obserwowałem ilość ruchu na interfejsach, ale wyglądało, że jest mniej, niż kiedyś.

Postanowiłem sprawdzić, co się dzieje w rzeczywistości. Już kiedyś widziałem, że jest projekt arm czyli anonymizing relay monitor, ale wtedy nie było pakietów w Debianie, więc nie instalowałem, a pozwala on na znacznie więcej, niż tylko obejrzenie ilości ruchu, więc postanowiłem zainstalować arm.

W tej chwili paczka tor-arm jest dostępna w Debianie unstable (na stable instaluje się czysto), więc doinstalowałem ją (wajig install tor-arm). Samo uruchomienie (wpisanie arm) nic nie dało (używa domyślnej konfiguracji), więc po pierwsze, skopiowałem domyślną konfigurację (położenie w Debianie nieco inne niż podawane w manualu):

zcat /usr/share/doc/tor-arm/armrc.sample.gz > .arm/armrc

Nadal nic. Kolejna sprawa, to uruchomienie portu do kontroli w samym Torze, czyli dodanie w configu opcji:

ControlPort 9051

Po ponownym uruchomieniu arm jak najbardziej się połączył, ale ostrzega, że port do kontroli jest otwarty. Co prawda maszynka jest firewallowana, ale wypadałoby dodać hasło do zarządzania. Nie jest to trywialne i znalezienie zajęło mi dłuższą chwilę (chociaż jest w dokumentacji), więc opiszę. Najpierw generujemy hash hasła:

tor --hash-password jakieshaslo 

Otrzymujemy coś w stylu ciągu

16:2CCAAB2DEEB082CD60610B3BE6A0FF2A90EEFC92AD434C9C8CBFA42B0B

Następnie w konfiguracji Tora dodajemy linię

HashedControlPassword 16:2CCAAB2DEEB082CD60610B3BE6A0FF2A90EEFC92AD434C9C8CBFA42B0B

i restartujemy Tora (/etc/init.d/tor restart). Na koniec edytujemy ~.arm/armrc i uzupełniamy linię z startup.controlPassword, by miała postać:

startup.controlPassword jakieshaslo

Po zmianach okazało się, że miałem nosa i faktycznie niewiele się dzieje. Nawet bardzo niewiele. Praktycznie nic. Ponieważ kiedyś ruchu było więcej, postanowiłem sprawdzić, czy winnym nie jest ustawienie węzła jako bridge node. Bingo! Po zmianie od razu jest więcej ruchu. Zatem w chwili obecnej mój konfig Tora wygląda następująco:

ControlPort 9051
RelayBandwidthRate 20 KBytes
RelayBandwidthBurst 30 KBytes
ExitPolicy reject *:* # no exits allowed
ORPort 443
HashedControlPassword 16:2CCAAB2DEEB082CD60610B3BE6A0FF2A90EEFC92AD434C9C8CBFA42B0B

UPDATE: Przy okazji wygląda, że wyłączając tryb bridge node upiekłem dwie pieczenie na jednym ogniu. Po 16 godzinach zużycie pamięci RAM przez Tor wynosi ledwie 9%, zamiast wspomnianych 30%. Czyżby jakiś bug związany z trybem bridge? W każdym razie średni ruch upload i download teraz to po 50 Kbps, zużycie pamięci, które mnie trochę bolało mniejsze. Jednym słowem: lubię to! 😉