Ile prądu zużywają żarówki LED?

W poprzednim wpisie pisałem o kalkulatorze zwrotu inwestycji w urządzenia energooszczędne. W tym wpisie będzie o tym, że kalkulować trzeba ostrożnie i nie takie LEDy fajne, jak je piszą.

Zaczęło się niewinnie – kupiłem okazyjnie (jakieś 4 zł/szt.) na Allegro żarówki Ledlumen, które na papierze prezentowały się całkiem obiecująco, szczególnie zważywszy na to, że używane dotychczas z IKEA mają już swoje lata. Coś mnie podkusiło, żeby sprawdzić przy pomocy watomierza, ile faktycznie pobierają prądu. Porównałem też jak jasno świecą przy pomocy aplikacji na telefonie, ale tego nie opisuję, bo mało dokładny czy powtarzalny pomiar (dochodzi światło otoczenia, ułożenie lampki i telefonu). W każdym nowe Ledlumen razie świecą jaśniej od tych używanych z IKEA, co zresztą widać gołym okiem. Natomiast wyniki pomiaru prądu okazały się na tyle ciekawe, że przetrzepałem różne rodzaje żarówek, które miałem w domu.

Pomiar za każdym razem przeprowadzałem tak samo – wkręcenie zimnej żarówki do lampki, odczyt kilka sekund po włączeniu, kolejny po minucie. Główni bohaterowie to:

  • żarówki z IKEA, używane, nazwy nie pamiętam, kupowane w różnym okresie. Zwykle paroletnie. Moc znamionowa 6,3 W.
  • żarówki Ledlumen, zakupione na Allegro, ok. 4 zł/szt. Nowe. Moc znamionowa 6 W
  • żarówki Ryet z IKEA, kupione w promocji za 4 zł/szt. Nowe. Moc znamionowa 5 W
  • żarówki Anslut z Jula. Nowe. Moc znamionowa 5,8 W

Poniżej dane z pomiarów w formie

  • opis żarówki, moc znamionowa, pobór po włączeniu, pobór po minucie od włączenia
  • IKEA 6,3 7,4 6,5
  • IKEA 6,3 6,5 6,6
  • IKEA 6,3 6,5 6,6
  • IKEA 6,3 7,4 6,5
  • IKEA 6,3 6,5 6,6
  • IKEA 6,3 6,7 6,8
  • Ledlumen 6,0 7,0 7,1
  • Ledlumen 6,0 7,1 7,2
  • Ledlumen 6,0 7,2 7,3
  • Ryet IKEA 5,0 4,5 4,5
  • Ryet IKEA 5,0 5,4 4,5
  • Anslut Jula 5,8 5,5 5,5
  • Anslut Jula 5,8 6,4 6,4
  • whitenergy 5,0 4,3 4,3
  • noname 3,0 1,8 1,8

Z powyższego daje się wyciągnąć kilka wniosków. Po pierwsze, niby takie same, nowe żarówki potrafią znacznie różnić się poborem prądu między sobą, co widać na Ryet i Anslut. Po drugie, pobór prądu nieco się zmienia po rozgrzaniu się żarówki. Po trzecie i najważniejsze, wartości deklarowane to… wartości deklarowane, a różnice sięgają nawet 10%. I rzadko są to różnice na korzyść użytkownika, przynajmniej jeśli chodzi o zużycie energii.

UPDATE Pojawił się świetny wpis traktujący o zużywaniu się i zmianach w żarówkach LED (ang.) – warto przeczytać.

Kalkulator okresu zwrotu wymiany urządzeń elektrycznych

Jakoś rok czy dwa temu wdałem się w dość bezsensowną dyskusję, czy warto przechodzić z żarówek zwykłych na LED, albo – szerzej – czy pobór prądu przez urządzenie (np. router) może być przesłanką do jego wymiany. Oczywiście stałem na stanowisku, że może, bo zdarzyło mi się to już policzyć i choćby router między innymi z tego powodu wymienić. Argumenty drugiej strony były, że ludzi nie stać na żarówki LED, że to inwestycja i że zwraca się długo. Tu nie ma co dyskutować i gdybać, to można zwyczajnie zmierzyć i policzyć.

Wpadłem wtedy na pomysł, że warto zrobić kalkulator ułatwiający tego typu szacunki[1], bo to pięć minut roboty, a będzie można łatwo porównać i żarówki, i router, i dowolne inne urządzenie. A także łatwo sprawdzić przed zakupem, czy bardziej opłaca się w określonym horyzoncie czasowym kupić tańszy sprzęt AGD klasy A czy droższy A++, co również zdarzało mi się liczyć, zgrubnie[2].

Okazało się, że roboty jest znacznie więcej, niż pięć minut, jeśli się nie zna JavaScriptu. Całość działała, ale wyglądała bardzo koślawo i… zapomniałem o tym mini projekcie. Dziś, korzystając z zapowiedzianych podwyżek cen energii, które nie spowodują wzrostu wydatków na energię (haha) uznałem, że kalkulator opłacalności wymiany urządzeń elektrycznych warto odświeżyć, czyli doprowadzić do stanu pozwalającego na jego publikację. Nadal nie jest to zgrabne, ale da się używać bez bólu oczu. Pewnie będą drobne aktualizacje.

Jednocześnie chciałem, żeby wpis o kalkulatorze oszczędności energii i zaletach LED pojawił się chronologicznie wcześniej, niż nadchodzący wielkimi krokami wpis o różnicach między deklarowanymi wartościami poboru prądu żarówek LED, a zużyciem rzeczywistym.

Użycie jest proste – podajemy ile średnio godzin dziennie używane jest urządzenie, podajemy aktualną cenę 1 kWh (wraz z przesyłem), cenę zakupu urządzeń (jeśli już posiadamy, podajemy zero). W odpowiedzi otrzymujemy miesięczny koszt użytkowania urządzeń oraz okres zwrotu. W przypadku wartości ułamkowych należy użyć kropki jako separatora dziesiętnego.

W przykładzie, po otwarciu strony jest żarówka zwykła 60W za 1 zł oraz 6W LED za 10 zł. Przy użyciu 2h dziennie i cenie 55gr/kWh (jakoś tak teraz jest) zwraca się w 5 m-cy. Ogólnie jeśli ktoś chce oszczędzać pieniądze, to warto wymienić wszystkie istniejące żarówki starego typu, zupełnie nie przejmując się częstotliwością zapalania i gaszenia…

Korzystając z okazji przypomnę adres mojego nieco zapuszczonego bloga dotyczącego realnego poboru prądu przez różne urządzenia.

[1] Oczywiście działający po stronie przeglądarki, napisany w JavaScript – nie pobieram żadnych danych na serwer. Mocno poza strefą komfortu, jeśli chodzi o język. Totalnie zmarnowane szanse na produktyzację. Ale uważam, że tak się powinno robić tego typu kalkulatory.

[2] Wtedy wyszło mi, że w perspektywie pięciu lat, bo na tyle szacowałem żywotność sprzętu, nie ma sensu dopłacać kilkuset zł za urządzenie bardziej energooszczędne.

Jak usprawnić sieć w domu? cz. 2

W poprzedniej części było o genezie cyklu, sposobach pomiaru i najlepszym możliwym połączeniu, czyli bezpośrednio skrętką. Ze względu na zainteresowanie paru osób wynikami testów PLC, przeskakuję WiFi i przechodzę do wyników testów PLC.

Na testy dostałem TL-PA4010P kit. Z tego co widzę, w wyszukiwarce znajduje zarówno, że jest to AV500 jak i AV600, ale na opakowaniu było AV600, więc link jest prawdopodobnie prawidłowy. Do podłączenia podszedłem zupełnie laicko – z tego miejsca w mieszkaniu internet ma trafić do tamtego – zupełnie nie wnikałem w to jakie są fazy i czy po drodze są listwy.

Błąd. Zalecane jest wpięcie w ten sam obwód i bezpośrednio do gniazdka, z pominięciem listew zasilających. W związku z tym wykonałem kilka testów, w tym wpisie zajmę się tylko wynikami pierwszej, najgorszej topologii – jeden kontroler bezpośrednio w gniazdku, drugi za listwą z włącznikiem i wpiętej w nią listwą zwykłą. Od razu podaję link do wskazówek jak najlepiej podłączyć PLC. Wyniki z optymalnego połączenia są lepsze i będą w kolejnym wpisie, ten to bardziej „jakoś wpiąłem i tak działało”.

Na wstępie miałem małe rozczarowanie, które rozwiewa dopiero lektura powyższego linka. AV600 oznacza 600 Mbps. I jakkolwiek przypuszczałem, że będzie to 300 upload, 300 download, to aby taki wynik osiągnąć, trzeba by mieć w urządzeniu port 1 GE. Tymczasem jak widać są tam porty 100 Mbps i taką prędkość linkowania się z urządzeniami osiągałem. Nie jest to dla mnie wielki problem, bo mój router także ma porty 100 Mbps, ale jeśli ktoś liczy na szybkie połączenie z NAS itp., to może się zawieść.

Samo podłączenie jest proste – sprowadza się do włożenia urządzeń w gniazdka, wpięcia ethernetu i naciśnięciu przycisku do parowania.

Wyniki z testu w niekomfortowych warunkach:

1.
[ ID] Interval           Transfer     Bandwidth       Jitter    Lost/Total Datagrams
[  4]   0.00-60.00  sec   547 MBytes  76.5 Mbits/sec  1.195 ms  0/70059 (0%) 
[  4] Sent 70059 datagrams

2.
[ ID] Interval           Transfer     Bandwidth       Retr
[  4]   0.00-60.00  sec   418 MBytes  58.4 Mbits/sec    0             sender
[  4]   0.00-60.00  sec   417 MBytes  58.3 Mbits/sec                  receiver

3.
--- 192.168.10.126 ping statistics ---
600 packets transmitted, 600 received, 0% packet loss, time 60299ms
rtt min/avg/max/mdev = 3.310/3.657/13.757/0.965 ms
4.
--- 192.168.10.126 ping statistics ---
600 packets transmitted, 600 received, 0% packet loss, time 60338ms
rtt min/avg/max/mdev = 21.582/24.445/35.531/2.837 ms

5.
[ ID] Interval           Transfer     Bandwidth       Jitter    Lost/Total Datagrams
[  4]   0.00-3600.00 sec  32.6 GBytes  77.9 Mbits/sec  1.447 ms  5136/4278660 (0.12%) 
[  4] Sent 4278660 datagrams

6.
[ ID] Interval           Transfer     Bandwidth       Retr
[  4]   0.00-3600.00 sec  24.6 GBytes  58.6 Mbits/sec    0             sender
[  4]   0.00-3600.00 sec  24.5 GBytes  58.6 Mbits/sec                  receiver

7.
--- 192.168.10.126 ping statistics ---
36000 packets transmitted, 36000 received, 0% packet loss, time 3625078ms
rtt min/avg/max/mdev = 2.759/4.280/16.010/1.247 ms

8.
--- 192.168.10.126 ping statistics ---
36000 packets transmitted, 36000 received, 0% packet loss, time 3618568ms
rtt min/avg/max/mdev = 22.662/24.105/106.475/2.133 ms, pipe 2

9.
Inea Orange

Jak widać nawet w tych niekomfortowych warunkach zestaw radził sobie przyzwoicie. Brak strat pakietów, niskie i stabilne opóźnienia. Widać wzrost czasu odpowiedzi w zależności od wielkości pakietu i jak sprawdziłem empirycznie pojawia się on przy rozmiarze pakietu między 900 a 1000 i jest to jedyna istotna różnica w stosunku do zwykłęgo ethernetu.

Niezła szybkość transmisji danych między urządzeniami nie wzbudziła mojej czujności; to, że coś chyba jest nie w porządku zacząłem podejrzewać dopiero po ostatnim teście, po podłączeniu jednego z końców kabla do routera. Dane z internetu pobierały się zwyczajnie wolno i… nie miało to pokrycia w testach syntetycznych. W tym momencie uprzedzę fakty i od razu napiszę, że przy zalecanym połączeniu wyniki w ostatnim teście były identyczne jak na kablu. Ale to już w kolejnym wpisie.

Na koniec słowo o zużyciu energii, ponieważ są to urządzenia aktywne. Podłączyłem urządzenie do watomierza. Bez podłączonego komputera pokazał 1,5W, po podłączeniu komputera i podczas transmisji danych 2,2-2,3W. Jeśli wyłączymy komputer, PLC po paru minutach przechodzi w stan uśpienia i pobiera wówczas 0,8W.

Jak usprawnić sieć w domu? cz. 1

Wstęp

Wpis jest wstępem do serii mini testów, które przeprowadziłem lub przeprowadzę w najbliższym czasie. Chodzi o rozwiązanie kwestii dostępu urządzeń w domu do internetu i zapewnienia ich łączności pomiędzy sobą. Powodem było moje WiFi, które choć doprowadzone aktualnie do zadowalającej używalności, niekoniecznie było optymalne zarówno jeśli chodzi o stabilność połączenia, jak i oferowane przepływności czy opóźnienia. Na rynku istnieje kilka rozwiązań, które mają za zadanie pomóc w dostarczeniu sieci, niedawny wpis o PLC przypomniał mi, że kiedyś interesowałem się bardziej tematem, a technika poszła naprzód.

Szybkie pytanie na wewnętrznym forum firmowym czy komuś nie zalega parka PLC spotkała się z pozytywnym odzewem (uroki pracy w większej firmie, z otwartymi geekami – ciekaw jestem czego nie dałoby się znaleźć… ;-)) i okazało się, że nie tylko zalega chwilowo, ale są różnego typu, stąd pomysł na porównanie i podzielenie się wnioskami.

Nie ma to być test uniwersalny ani profesjonalny – robię go przede wszystkim dla siebie i w dostępnym mi środowisku (a np. typ ścian czy otoczenie może mieć kolosalne znaczenie dla WiFi, podobnie wygląda kwestia sieci elektrycznej dla PLC), mam jednak nadzieję, że uda się wyciągnąć jakieś wnioski ogólne i może komuś pomoże w wyborze rozwiązania.

O ile nie napisano inaczej, wykorzystywany jest firmware dostarczony z urządzeniami. Systemy nie są specjalnie tuningowane – ot, linuksowy default. Z oczywistych względów trudno mi wypowiadać się na temat stabilności poszczególnych rozwiązań w dłuższym okresie czasu.

Topologia sieci

Topologia sieci jest następująca: modem ISP (kablówka) w przedpokoju, podłączony ethernetem do routera. Router (obecnie TL-841) z wgranym OpenWRT/LEDE dostarcza internet reszcie urządzeń po WiFi. Przedpokój to w miarę centralny punkt w mieszkaniu, odległość od urządzeń końcowych (laptopy, smartfony) ok. 7 metrów, część urządzeń pracuje w 802.11n, część w 802.11g i tak zostanie – modernizacja czy wymiana końcówek są nieopłacalne.

Dla jasności: to działa od lat i w zasadzie wystarcza, jeśli chodzi o przepływność. Wystarczało i na 802.11g, gdy transfery (do mojego laptopa) wynosiły 15-18 Mbps (wg speedtest.net). Po zmianie routera na nowszy jest lepiej – 30 Mbps. Nadal jest to gorzej niż to, co oferuje operator (60 Mbps), ale w zupełności wystarcza do transferów „z zewnątrz”. Zobaczymy jednak, czy są jakieś alternatywy i czego się spodziewać.

Ani mieszkanie w kamienicy, ani dość zaszumiony eter na 2,4 GHz, nie pomagają w dobrym działaniu WiFi, więc nieco gorzej wygląda sytuacja, jeśli chodzi o stabilność. Rzadko, bo rzadko, ale zdarzały się problemy (straty do routera, wzrost czasów odpowiedzi). Zwykle, w czasach gdy korzystałem z oryginalnego firmware producenta, wystarczał restart routera lub sprawdzenie jak wygląda sytuacja w eterze przy pomocy WiFi Analyzera i zmiana kanału na wskazany jako najlepszy (czyli najmniej używany).

Swoją drogą zmiana kanału na nieużywany jest najprostszym sposobem na poprawę zasięgu czy jakości WiFi, więc jeśli ktoś szuka odpowiedzi na pytanie jak poprawić sygnał WiFi, to zdecydowanie polecam zacząć od tego.

Pomiary

Wykonywane są cztery testy wewnętrzne, oraz ogólny test przy pomocy speedtest.net (beta, czyli bez Flash). Testy wewnętrzne wykonywane były w dwóch wariantach: krótkim (w założeniu ok. 60s) i długim (ok. 3600s).

  1. iperf3 -u -b 0 -t 60 -c 192.168.10.126
  2. iperf3 -t 60 -c 192.168.10.126
  3. ping -i 0.1 -c 600 192.168.10.126
  4. ping -s 1500 -i 0.1 -c 600 192.168.10.126
  5. iperf3 -u -b 0 -t 3600 -c 192.168.10.126
  6. iperf3 -t 3600 -c 192.168.10.126
  7. ping -i 0.1 -c 36000 192.168.10.126
  8. ping -s 1500 -i 0.1 -c 36000 192.168.10.126
  9. speedtest.net

Jak widać jest to pomiar przepływności przy użyciu pakietów UDP, TCP oraz pomiar opóźnień przy pomocy ping ze standardową oraz maksymalną (MTU 1500) wielkością pakietu. Ostatni test to „realne” połączenie z internetem. Wykorzystywane serwery mojego ISP oraz Orange, który często był wskazywany jako najlepszy.

Za klienta służy mój laptop z Debianem, za sondę posłużyło Banana Pi (jedyny SoC z gigabitowym portem, który miałem pod ręką). W obu systemach wykorzystany iperf3. Pomiar nie był jedyną czynnością wykonywaną przez laptopa, ale – poza testami WiFi – był wykorzystany osobny interfejs, a obciążenie było typowe, bez ekstremów.

Dodatkowo mogą pojawić się uwagi, jeśli coś nieplanowanego podczas testów rzuci mi się w oczy.

Wyniki bazowe

Na wstępie spiąłem oba urządzenie kablem „na krótko” i uruchomiłem testy. Synchronizacja oczywiście 1 Gbps.

1.
[ ID] Interval           Transfer     Bandwidth       Jitter    Lost/Total Datagrams
[  4]   0.00-60.00  sec  6.07 GBytes   869 Mbits/sec  0.136 ms  592341/795464 (74%)
2.
[ ID] Interval           Transfer     Bandwidth       Retr
[  4]   0.00-60.00  sec  5.47 GBytes   784 Mbits/sec  138             sender
[  4]   0.00-60.00  sec  5.47 GBytes   783 Mbits/sec                  receiver
3.
--- 192.168.10.126 ping statistics ---
600 packets transmitted, 600 received, 0% packet loss, time 62319ms
rtt min/avg/max/mdev = 0.291/0.372/0.549/0.031 ms
4.
--- 192.168.10.126 ping statistics ---
600 packets transmitted, 600 received, 0% packet loss, time 62290ms
rtt min/avg/max/mdev = 0.427/0.549/24.612/0.996 ms

5.
[ ID] Interval           Transfer     Bandwidth       Jitter    Lost/Total Datagrams
[  4]   0.00-3600.00 sec   374 GBytes   893 Mbits/sec  0.220 ms  36944269/49033499 (75%)
6.
[ ID] Interval           Transfer     Bandwidth       Retr
[  4]   0.00-3600.00 sec   349 GBytes   833 Mbits/sec  8735             sender
[  4]   0.00-3600.00 sec   349 GBytes   833 Mbits/sec                  receiver
7.
--- 192.168.10.126 ping statistics ---
36000 packets transmitted, 36000 received, 0% packet loss, time 3745436ms
rtt min/avg/max/mdev = 0.278/0.369/40.914/0.398 ms

8.
--- 192.168.10.126 ping statistics ---
36000 packets transmitted, 36000 received, 0% packet loss, time 3745111ms
rtt min/avg/max/mdev = 0.260/0.500/2.861/0.046 ms

9.
Inea Orange [1]

Jak widać bez większych niespodzianek – osiągnięte wyniki wynikają raczej z ograniczenia samego Banana Pi. Mimo to widać, że jest szybko, czasy odpowiedzi niskie i jest stabilnie.

[1] W przypadku pomiaru łącz topologia była nieco inna – laptop wpięty po kablu do portu routera (port 100 Mbps). W zasadzie dokładniej byloby wpiąć go bezpośrednio w modem kablowy, ale router jest stałym elementem zestawu w pozostałych topologiach… Dostawca internetu (Inea) deklaruje 60/10 Mbps.

ENEA i papierowe druki przelewu

Mój dostawca energii, ENEA, przysyła mi co pewien czas pocztą rachunek. Składa się on z trzech kartek A4. Na pierwszej jest zestawienie zużycia energii, na drugiej faktura, na trzeciej druk przelewu, taki do opłacenia na poczcie. Dotychczas nie zwracałem na to specjalnej uwagi, ale ostatnio się zastanowiłem, że dla tej ostatniej kartki mam jedno zastosowanie: niezadrukowana połowa (A5) służy mi do szybkich podręcznych notatek, a drugą część wyrzucam, bo przelewu za prąd inaczej niż elektronicznie nie zdarzyło mi się płacić.

Ponieważ i tak mam notesy, stwierdziłem, że zapytam się czy i jak można zrezygnować ze zbędnego mi druku przelewu, czyli bezsensownego generowania śmieci. Napisałem maila i szybko dostałem odpowiedź: nie da się, przynajmniej nie w tej formie, w której chcę. Można albo przejść na faktury elektroniczne, albo dostawać komplet.

Trochę dziwi mnie brak parcia na faktury elektroniczne. Wydaje mi się, że nie było na ten temat nawet żadnej informacji w przesyłanych materiałach, o zachęcie finansowej nie wspomnę. Za to wymagane jest założenie konta w eBOK (w siedmiu prostych krokach) i złożenie wniosku o fakturę elektroniczną (w czterech prostych krokach). W zamian stracę możliwość opłacania faktur i kontrolowania rachunków przez dowolną osobę z gospodarstwa domowego, bo zapewne adres mailowy do wysyłki faktury można podać tylko jeden…