Własna strona w sieci Tor

Za sprawą normalnych tradycyjnych stron w sieci Tor zrobiło się ostatnio głośno z powodu Facebooka. Nie dość, że Facebook wystawił stronę oficjalnie do sieci Tor pod adresem .onion, to adres był ciekawy, a całość jest dostępna po HTTPS, czyli w wersji szyfrowanej[1]. Mniejsza o powody, dla których to uczynili. Wydaje się, że nie tyle chodziło im o anonimowość użytkowników (nie miejcie złudzeń), co o ich prywatność i bezpieczeństwo (ukrycie lokalizacji). Plus przy okazji rozwiązali sobie problem false positives przy wykrywaniu włamań, które mieli przy użytkownikach korzystających z tradycyjnych exit node[2]. Będzie zatem o własnej stronie w sieci Tor.

Tor logoŹródło: https://media.torproject.org/image/official-images/2011-tor-logo-flat.svg

Tak czy inaczej, wygląda, że Tor został dostrzeżony przez dużych w z właściwej perspektywy, czyli po prostu jako medium transmisji, a nie odrębna sieć, używana przez złoczyńców[3]. Myślę, że można spodziewać się kolejnych naśladowców.

Warto zauważyć, że to co zrobił Facebook to nie jest typowy hidden service w sieci Tor. W typowym chodzi o ukrycie tożsamości właściciela, miejsca hostowania itp. Czyli masa pracy poświęcona uszczelnianiu systemu i serwera WWW, która nie jest przedmiotem tego wpisu. Na stronie projektu Tor też się tym nie zajmują, ale zainteresowani znajdą tam ogólne wskazówki. Tu przeciwnie – wszystko jest dostępne, a tożsamość jest potwierdzona certyfikatem SSL, czyli wersja znacznie łatwiejsza w wykonaniu.

I właśnie takim przypadkiem zajmę się w tym wpisie. Całość opisana jest dokładnie na stronie projektu Tor. Widzę jednak, że pojawiają się pytania jak to zrobić, więc zamieszczę wersję skróconą i uproszczoną. Tak naprawdę całość sprowadza się do dwóch linii w pliku konfiguracyjnym. Zakładam, że Tor jest już skonfigurowany jako relay node lub bridge node. I nawet nie do napisania, tylko do odhashowania/edycji.

Przede wszystkim w pliku konfiguracyjnym[4] szukamy sekcji dotyczącej hidden services, zaczynającej się od linii:

############### This section is just for location-hidden services ###

Następnie odhashowujemy/edytujemy dwie linie:

HiddenServiceDir /var/lib/tor/hidden_service/
HiddenServicePort 80 IP_SERWERA_WWW:80

Pierwsza musi wskazywać na katalog, który musi mieć prawa odczytu i zapisu dla użytkownika na którym działa demon Tor. W Debianie wystarczy odhashować.

Druga to wskazanie który port chcemy przekierowywać i na jaki adres oraz port. IPv4 działa na pewno, IPv6 nie udało mi się skłonić do działania. Jedyna zmiana, czy też wymóg konfiguracji po stronie serwera WWW, jest taki, że musi on pozwalać na dostęp do zasobów po IP, bez podania domeny (vhosta)[5].

Następnie należy zrestartować demona Tor i… gotowe. Pozostało jeszcze tylko sprawdzić, jaki adres ma nasz hidden service:

cat /var/lib/tor/hidden_service/hostname

Potem można już tylko zweryfikować działania serwisu za pośrednictwem adresu .onion. Jeśli nie mamy pod ręką normalnego dostępu do Tora, można posiłkować się bramką Tor2web.

[1] I całe szczęście, bo przypominam, że Tor nie szyfruje użycie Tora nie oznacza automatycznie szyfrowania danych. Co więcej, każdy węzeł, ma możliwość przechwycenia całej (co prawda zaszyfrowanej) transmisji. A exit node, jest w stanie podsłuchać nieszyfrowaną transmisję do końcowego hosta.

[2] Więcej w tym wpisie (ANG).

[3] Nie ukrywajmy, typowy użytkownik Tora kojarzył się do tej pory z nielegalnymi działaniami.

[4] W Debianie jest to /etc/tor/torrc, pewnie w Ubuntu i innych pochodnych jest analogicznie.

[5] Tu uwaga dla chcących stawiać bramki hidden service – z punktu widzenia zewnętrznego serwisu (i tylko jego, i tylko w przypadku połączeń poprzez adres .onion) mój klient Tor IP jest teraz exit node! W przypadku nadużyć za pośrednictwem sieci Tor i adresu .onion może się to skończyć wizytą policji. W przypadku serwisów, których nie jesteśmy właścicielami bezwzględnie należy mieć zgodę właściciela serwisu.

Boot once w GRUB

Czasami jest potrzeba, żeby uruchomić maszynę z danym kernelem, ale tylko raz. W przypadku niepowodzenia chcemy mieć uruchamiany z powrotem stary, sprawdzony kernel. Zwykle taka potrzeba pojawia się, gdy testujemy nowy kernel i nie mamy fizycznego (lub zbliżonego) dostępu do maszyny, a np. mamy pod ręką kogoś, kto w razie problemów niekoniecznie pomoże z debugiem, ale chociaż wciśnie reset. Dziś pojawiła się u mnie taka potrzeba, za sprawą dedyka pod Piwika i chęci zmiany kernela z nieco starego z OVH na dystrybucyjny.

Okazało się, że wypadłem z tematu. Ostatni raz miałem potrzebę jednorazowego uruchomienia kernela chyba w okolicach LILO jako używanego bootloadera. Nie pamiętam jak to dokładnie w LILO wyglądało, ale mam wrażenie, że było proste, intuicyjne (w końcu jeden konfig) i – przede wszystkim – dobrze udokumentowane.

Poszukałem chwilę i znalazłem polecenie grub-reboot, któremu jako parametr podaje się numer wpisu w /boot/grub/grub.cfg i które ma powodować jednokrotne uruchomienie kernela o podanym wpisie. Ucieszyłem się, że pomyśleli o mnie i tak prosto. Maszynka niekrytyczna, kernel dystrybucyjny, więc raczej wstanie, wydałem więc stosowne polecenie, następnie reboot i… system wstał! Ze starym kernelem.

Nawet niezbyt się zirytowałem. Po prostu odpaliłem testowego kompa w domu i zacząłem się bawić. Ustawiam numer wpisu, który ma się włączyć, reboot i… to samo. Dłuższa chwila szukania i znalazłem opis na niezawodnym wiki Arch Linux:

This requires GRUB_DEFAULT=saved in /etc/default/grub (and then regenerating grub.cfg) or, in case of hand-made grub.cfg, the line set default=”${saved_entry}”.

Jak na lata doświadczeń przystało, wyboru kernela nie pozostawiam przypadkowi i w moim /etc/default/grub były ustawione na sztywno numery kerneli do uruchomienia. Zmieniam na powyższe na testowej maszynie w domu, grub-reboot potem reboot i… wstał! Z nowym kernelem. Świat wydaje się piękny, więc reboot, by wrócić na stary kernel i… tak dobrze nie ma. Uruchamia się za każdym razem z nowym.

Nawet niezbyt się zirytowałem, po prostu rebootnąłem zdalną maszynkę na nowy kernel. Skoro dystrybucyjny to raczej wstanie. Stosowne zmiany, reboot i… maszynka wstała, z nowym kernelem, wszystko wydaje się działać. Misja zakończona, cel osiągnięty.

I tu byłby koniec wpisu, ale w międzyczasie zacząłem rozmowę na ten temat na kanale IRC #debian (@freenode). Tam dowiedziałem się o /boot/grub/grubenv i o tym, że może (będzie) się tak dziać, jeśli nie jest ustawione prev_saved_entry. I faktycznie, nie było. I dowiedziałem się, że można to ustawić wydając polecenie grub-reboot więcej, niż raz.

Czyli, żeby zrobić boot once dla GRUBa, trzeba kolejno:

  • ustawić GRUB_DEFAULT=saved w /etc/default/grub
  • grub-reboot <wpis, gdzie ma być default>
  • grub-reboot
  • sprawdzić /boot/grub/grubenv na wszelki wypadek
  • reboot

I pomyśleć, że przy LILO była to szybka edycja konfiga plus lilo dla wprowadzenia zmian w życie… Znaczny postęp poczyniliśmy! 😉

Skoro już wpis na tematy linuksowe… Archa nie próbowałem, ale ludzie (w tym jeden DD) chwalą. Bardzo dobra dokumentacja. Poza tym, jest taka inicjatywa jak debianfork.org. I cieszę się, że jest. Bo skoro Debian może mieć więcej niż jedną architekturę, więcej niż jeden kernel (tak kFreeBSD), to czemu nie miałby móc mieć różnych, równorzędnych demonów do startu usług?

Jak obliczyć wolną pamięć RAM w Linuksie?

Ile mam wolnej pamięci w systemie? to częste pytanie i użytkowników desktopów, i administratorów. Na każde pytanie istnieje prosta, błędna odpowiedź i podobnie jest w tym przypadku, choć ustalanie ilości wolnej pamięci RAM wydaje się trywialną sprawą. Większość ludzi korzysta z polecenia free, którego przykładowy wynik może wyglądać następująco (desktop):

total       used       free     shared    buffers     cached
Mem:       3926996    3614388     312608          0      82656    1305692
-/+ buffers/cache:    2226040    1700956
Swap:      1022964      20480    1002484

Typowa interpretacja byłaby zapewne w tym przypadku taka, że wolnych jest 312608 kB RAM. Niezupełnie jest to prawdą. Tzn. tyle pamięci faktycznie jest zupełnie nieużywanej, ale tak naprawdę w razie potrzeby dla aplikacji dostępne jest znacznie więcej pamięci i należałoby raczej patrzeć na drugi wiersz, nie pierwszy, czyli bliższym prawdy wynikiem jest, że wolnych w tym przypadku jest 1700956 kB RAM.

W przypadku serwerów z Linuksem, ilość wolnej pamięci łatwiej odczytać, szczególnie na potrzeby skryptów, z /proc/meminfo/:

cat /proc/meminfo | head -n 5
MemTotal:        3926996 kB
MemFree:          296944 kB
MemAvailable:    1589592 kB
Buffers:           82692 kB
Cached:          1305316 kB

Patrząc na wartości z /proc/meminfo, ilość zajętej i wolnej pamięci RAM można liczyć w następujący sposób:

Free RAM = MemFree + Buffers + Cached
Used RAM = MemTotal - (MemFree + Buffers + Cached)

Jednak i to niezupełnie jest prawdą, bo do w skład Cached wchodzą np. obszary używane przez tmpfs, które nie mogą być zwolnione. Dlatego niedawno w /proc/meminfo dodano kolejną wartość MemAvailable, której zadaniem jest podawanie wprost ilości dostępnej do wykorzystania przez programy (czyli, potocznie, wolnej) pamięci. Jeśli taka wartość jest podana, to zamiast powyższych wzorów lepiej skorzystać z:

Free RAM = MemAvailable
Used Ram = MemTotal - MemAvailable

Linki:

  1. http://www.linuxatemyram.com/
  2. https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=34e431b0ae398fc54ea69ff85ec700722c9da773