711 wyrazów o optymalizacji

Tytuł jest przekorny – raczej nie będzie to 711 wyrazów, ale liczba na początku tytułu dobrze wpływa na klikalność. Poza tym, liczba 711 jak najbardziej jest na miejscu, a sam wpis będzie o optymalizacji.

Mianowicie pojawił się pod koniec zeszłego roku Sekurak Book Simple CTF, gdzie było pewne zadanie. Jeśli chcesz pobawić się w zrobienie tego CTF samodzielnie, choć jest już zakończony[1], to dobry moment na przerwanie lektury wpisu. Zadanie jest na tyle proste i znane, że publikacja rozwiązania nie spowoduje krzywdy, a przy tym podczas dyskusji z kolegą z pracy pojawiły się ciekawe zagadnienia natury optymalizacyjnej, więc postanowiłem opisać.

Zmodyfikowana treść zadania, z zachowaniem pierwotnego sensu, pojawiła się jako wpis zagadka o siódmej jedenaście na zaprzyjaźnionym blogu. Z moją niewielką pomocą. Jeśli ktoś nie chce się bawić w całą CTFową otoczkę, a ma ochotę wytężyć mózg, zapraszam tamże. Tym bardziej, że jest więcej zagadek.

Całość daje się sprowadzić do układu dwóch równań z czterema niewiadomymi:
a + b + c + d = 7,11
a * b * c * d = 7,11
WolframAlpha – być może niewprawnie użyty – protestował Standard computation time exceeded, ale przecież to się da policzyć… W końcu chodzi o wartości nieciągłe, bo ceny muszą być wielokrotnością jednego grosza. Wiemy zatem, że każda z wartości jest większa od zera, mniejsza od 711 i jest wielokrotnością 0,01. Tu pauza – komputery znacznie lepiej radzą sobie z wartościami całkowitymi[2], więc przemnóżmy wartości przez 100 i przejdźmy w tym momencie na resztę czasu równoważną formę:
a + b + c + d = 711
a * b * c * d = 711000000

Przy naiwnym brute force, korzystając jedynie z faktu, że wszystkie zmienne muszą być liczbami całkowitymi, mamy do sprawdzenia maksymalnie 711^4 kombinacji. Czyli 225 miliardów. Jest to wersja wyjściowa, bez żadnych optymalizacji. Można to zapisać w Pythonie w postaci:

limit = 712
iterations = 0
for a in range(1, limit):
    print(a)
    for b in range(1, limit):
        for c in range(1, limit):
            for d in range(1, limit):
                iterations += 1
                if a + b + c + d == 711:
                    if a * b * c * d == 711000000:
                        print("Solved: ", a, b, c, d, iterations)
                        exit()

Jak widać zliczam też ilość iteracji, i dzięki temu wiem, że komputer musi – w różnych pętlach – policzyć w sumie prawie do 43 miliardów, zanim znajdzie rozwiązanie. Czas znalezienia rozwiązania litościwe pominę – spokojnie można wybrać się na spacer czy zakupy.

Mamy jednak dwie dodatkowe własności: iloczyn czterech liczb oraz ich sumę. Jeśli ktoś bawił się w sprawdzanie, czy dana liczba jest pierwsza, to pamięta zapewne, jeśli liczba jest złożona, to mniejszy dzielnik będzie co najwyżej równy pierwiastkowi danej liczby. W naszym przypadku iloczyn dwóch niewiadomych będzie co najwyżej równy pierwiastkowi z 711000000, czyli 26665. Z kolei któraś z niewiadomych będzie mniejsza od pierwiastka z 26665, czyli nieco ponad 163. Można więc ograniczyć jedną ze zmiennych – oczywiście tę najczęściej używaną – do 163.
Dodatkowo, niewiele myśląc, można skorzystać z własności sumowania i ograniczyć pozostałe zmienne do 711-163=548. Czyli zmniejszyć przeszukiwaną przestrzeń do niecałych 27 miliardów. Oblekając to w skrypt, pierwsza optymalizacja wygląda następująco:

limit = 549
iterations = 0
for a in range(1, limit):
    print(a)
    for b in range(1, limit):
        for c in range(1, limit):
            for d in range(1, 164):
                iterations += 1
                if a + b + c + d == 711:
                    if a * b * c * d == 711000000:
                        print("Solved: ", a, b, c, d, iterations)
                        exit()

Czas potrzebny na rozwiązanie nadal pomijam, ale jest to raczej tyle, ile potrzeba na zrobienie kawy czy herbaty, niż zakupów. Ilość iteracji potrzebnych do znalezienia rozwiązania to niecałe 6 mld.

Jeśli nie pamiętamy o ciekawej własności związanej z dzielnikami danej liczby, to nadal możemy zoptymalizować pętle tak, żeby automatycznie uwzględniać w nich warunek związany z sumą . Daną zmienną zwiększamy do wartości zależnej od wartości pozostałych zmiennych. Dzięki temu można zaobserwować, że w miarę wzrostu wartości zmiennej a sprawdzenia pozostałych są coraz szybsze.

limit = 712
iterations = 0
for a in range(1, limit):
    print(a)
    for b in range(1, limit - a):
        for c in range(1, limit - a - b):
            for d in range(1, limit - a - b - c):
                iterations += 1
                if a + b + c + d == 711:
                    if a * b * c * d == 711000000:
                        print("Solved: ", a, b, c, d, iterations)
                        exit()

Rozwiązanie jest znajdowane nawet nieco szybciej, niż w poprzednim przypadku – ok. 5,5 mld iteracji.

Tu pojawił się pomysł: co gdyby zapisać to w taki sposób, by program działał na początku bardzo szybko i zwalniał? Czyli nie zaczynamy od niskich wartości zmiennych i zwiększamy, tylko zaczynamy od wysokich i zmniejszamy? Można to zapisać następująco:

limit = 711
iterations = 0
for a in range(limit, 0, -1):
    print(a)
    for b in range(limit - a, 0, -1):
        for c in range(limit - a - b, 0, -1):
            for d in range(limit - a - b - c, 0, -1):
                iterations += 1
                if a + b + c + d == 711:
                    if a * b * c * d == 711000000:
                        print("Solved: ", a, b, c, d, iterations)
                        exit()

Przyznaję, że efekty tego podejścia mnie zaskoczyły. Tylko 1 mld operacji potrzebnych do znalezienia rozwiązania. Na moim sprzęcie skrypt wykonał się poniżej 3 minut na Pythonie 3.8.3. Co ciekawe dla Pythona 2.7.18 był to czas poniżej 2 minut, więc znacznie szybciej. Oba z paczek z repo Debiana unstable. Ale to raczej tylko ciekawostka, Python 2 jest martwy.

Dochodzimy jednak do sedna. Widać, że interpreter Pythona ma znaczenie. Jeśli zależy nam na szybkości, to warto zainteresować się alternatywną implementacją Pythona, czyli projektem PyPy. PyPy w wersji 7.3.1 (kompatybilna z Pythonem 3.6.9) wykonuje powyższy program w… nieco ponad 3 sekundy. Czyli jakieś pięćdziesiąt razy szybciej. Jeśli wrócimy do rozwiązania drugiego, to okaże się, że z użyciem PyPy można je znaleźć w 17 sekund. Natomiast wersja naiwna to… raptem 2 minuty.

Jak widać, szybkie narzędzia mogą prowadzić do lenistwa umysłowego – skoro działa szybko, to po co optymalizować? Optymalizacja algorytmu w powyższych przykładach nie jest skończona, da się lepiej. Znacznie lepiej. Na razie zostawię pole do popisu czytelnikom w komentarzach, za jakiś tydzień zaktualizuję wpis.

[1] Jest to naprawdę prosty CTF, jeśli ktoś nie miał okazji się bawić – polecam przymierzyć.
[2] Jak mawiają: real programmers use integers.

UPDATE Dostępne są kolejne wpisy na ten temat.

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *